Concurrent Validity of Accelerations Measured Using a Tri-Axial Inertial Measurement Unit while Walking on Firm, Compliant and Uneven Surfaces

نویسندگان

  • Michael H. Cole
  • Wolbert van den Hoorn
  • Justin K. Kavanagh
  • Steven Morrison
  • Paul W. Hodges
  • James E. Smeathers
  • Graham K. Kerr
چکیده

Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2)). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foot design for a hexapod walking robot

This article describes the process of development of the robotic foot for the six-legged walking robot Messor. In order to allow the robot to negotiate uneven surfaces and to walk on a compliant ground, the foot includes the sensing device which provides information on contact forces between the foot and the ground. At first, the foot with single-axis force measurement unit is described. Next, ...

متن کامل

Variability and stability analysis of walking of transfemoral amputees.

Variability and stability of walking of eight transfemoral amputees and eight healthy controls was studied under four conditions: walking inside on a smooth terrain, walking while performing a dual-task and walking outside on (ir)regular surfaces. Trunk accelerations were recorded with a tri-axial accelerometer. Walking speed, mean and coefficient of variation of stride times (ST) and the root ...

متن کامل

Support Vector Machines for Young and Older Gait Classification using Inertial Sensor Kinematics at Minimum Toe Clearance

The present study investigates the inertial sensor kinematics obtained at a critical toe-control event, Minimum Toe Clearance (MTC), to classify different age groups. Fourteen young and fourteen older adults performed treadmill walking at their preferred walking speed, wearing a shoe-mount inertial sensor unit measuring tri-axial acceleration and triaxial angular velocities. Three dimensional (...

متن کامل

Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed Up-and-Go Test

BACKGROUND The timed-up-and-go test (TUG) is one of the most commonly used tests of physical function in clinical practice and for research outcomes. Inertial sensors have been used to parse the TUG test into its composite phases (rising, walking, turning, etc.), but have not validated this approach against an optoelectronic gold-standard, and to our knowledge no studies have published the mini...

متن کامل

Validation of an Inertial Sensor System for Quantifying Knee Function

Gait analysis has become a useful tool for clinicians in evaluating the progression of pathologies through functional analysis. The high cost and dedicated laboratories associated with the traditional camera-based motion analysis systems present the need for an alternative system. Direct measurement of kinetic parameters using inertial sensors (gyroscopes and accelerometers), in place of indire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014